Find the latest AMR Accelerator publications showcasing cutting-edge AMR research, from novel therapeutics to AI-driven approaches.
- Aguilar-Pérez C, Lenaerts AJ, Villellas C, et al. The role of cytochrome bc1 inhibitors in future tuberculosis treatment regimens. Nature Communications 2025 16:1. 2025;16(1):1-9. doi:10.1038/s41467-025-64427-6
- Karakitsios E, della Pasqua O, Dokoumetzidis A. Extrapolation of lung pharmacokinetics of bedaquiline across species using physiologically-based pharmacokinetic modelling. British Journal of Clinical Pharmacology. 2025;91(11). doi:10.1002/BCP.70163
- Brinch ML, Palladino A, Geurtsen J, et al. The neglected model validation of antimicrobial resistance transmission models – a systematic review. Antimicrobial Resistance & Infection Control. 2025;14(1):59. doi:10.1186/s13756-025-01574-x
- Vera-Yunca D, Matias C, Vingsbo Lundberg C, Friberg LE. Model-based translation of the PKPD-relationship for linezolid and vancomycin on methicillin-resistant Staphylococcus aureus : from in vitro time–kill experiments to a mouse pneumonia model. Journal of Antimicrobial Chemotherapy. Published online May 9, 2025. doi:10.1093/jac/dkaf140
- Verma AK, Kim RQ, Lamprecht DA, et al. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc1:aa3. npj Drug Discovery. 2025;2(1):6. doi:10.1038/s44386-025-00008-3
- Behrens E, Wicha SG. Interoccasion variability in population pharmacokinetic models: identifiability, influence, interdependencies and derived study design recommendations. Journal of Pharmacokinetics and Pharmacodynamics. 2025;52(2):23. doi:10.1007/s10928-025-09966-7
- Rabodoarivelo MS, Hoffmann E, Gaudin C, et al. Protocol to quantify bacterial burden in time-kill assays using colony-forming units and most probable number readouts for Mycobacterium tuberculosis. STAR Protocols. 2025;6(1):103643. doi:10.1016/j.xpro.2025.103643
- Gadiya Y, Genilloud O, Bilitewski U, et al. Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning. Journal of Chemical Information and Modeling. Published online February 23, 2025. doi:10.1021/ACS.JCIM.4C02347
- Dudnyk A, Lutchmun W, Duarte R, Lange C, Svensson EM. The importance of getting the dose right in the treatment of tuberculosis. Breathe. 2025;21(1):240177. doi:10.1183/20734735.0177-2024
- Guedes M, Bazan A de la S, Rubio-Martín E, et al. How to: share and reuse data – challenges and solutions from PrIMAVeRa project. Clinical Microbiology and Infection. 2025;0(0). doi:10.1016/j.cmi.2025.01.024
2024
-
Hassoun-Kheir N, Guedes M, Ngo Nsoga MT, et al. A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe. Clinical Microbiology and Infection. 2024;30:S14-S25. doi:10.1016/j.cmi.2023.09.001
- Lin Y, van der Laan LE, Karlsson MO, Garcia‐Prats AJ, Hesseling AC, Svensson EM. Model‐Informed Once‐Daily Dosing Strategy for Bedaquiline and Delamanid in Children, Adolescents and Adults with Tuberculosis. Clinical Pharmacology & Therapeutics. 2025;117(5):1292-1302. doi:10.1002/cpt.3536
- McClean M, Panciu TC, Lange C, Duarte R, Theis F. Artificial intelligence in tuberculosis: a new ally in disease control. Breathe. 2024;20(3):240056. doi:10.1183/20734735.0056-2024
-
Schildkraut JA, Köhler N, Lange C, Duarte R, Gillespie SH. Advances in tuberculosis biomarkers: unravelling risk factors, active disease and treatment success. Breathe. 2024;20(3):240003. doi:10.1183/20734735.0003-2024
- Hassoun-Kheir N, Guedes M, Arieti F, et al. Expert consensus on antimicrobial resistance research priorities to focus development and implementation of antibacterial vaccines and monoclonal antibodies. Eurosurveillance. 2024;29(47):2400212. doi:10.2807/1560-7917.ES.2024.29.47.2400212
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Leclerc QJ, Duval A, Guillemot D, Opatowski L, Temime L. Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study. PLOS Medicine. 2024;21(7):e1004433. doi:10.1371/journal.pmed.1004433
- Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends in Microbiology. 2024;32(7):663-677. doi:10.1016/j.tim.2023.11.011
-
Kilinç G, Boland R, Heemskerk MT, et al. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Subbian S, ed. Microbiology Spectrum. 2024;12(8). doi:10.1128/spectrum.00167-24
- Weston DJ, Thomas S, Boyle GW, Pieren M. Alpibectir: Early Qualitative and Quantitative Metabolic Profiling from a First-Time-in-Human Study by Combining 19 F-NMR (Nuclear Magnetic Resonance), 1 H-NMR, and High-Resolution Mass Spectrometric Analyses. Drug Metabolism and Disposition. 2024;52(8):858-874. doi:10.1124/dmd.124.001562
- Hoelscher M, Barros-Aguirre D, Dara M, et al. Candidate anti-tuberculosis medicines and regimens under clinical evaluation. Clinical Microbiology and Infection. 2024;30(9):1131-1138. doi:10.1016/j.cmi.2024.06.016
- Pieren M, Abáigar Gutiérrez-Solana A, Antonijoan Arbós RM, et al. First-in-human study of alpibectir (BVL-GSK098), a novel potent anti-TB drug. Journal of Antimicrobial Chemotherapy. 2024;79(6):1353-1361. doi:10.1093/jac/dkae107
- Gries R, Chhen J, van Gumpel E, et al. Discovery of dual-active ethionamide boosters inhibiting the Mycobacterium tuberculosis ESX-1 secretion system. Cell Chemical Biology. 2024;31(4):699-711.e6. doi:10.1016/j.chembiol.2023.12.007
- Nagar S, Nicholls D, Dawoud D, et al. A systematic review of economic evaluations of pharmacological treatments for active tuberculosis. Frontiers in Public Health. 2024;12:1201512. doi:10.3389/FPUBH.2024.1201512
- Aguilar-Ayala DA, Fernando Sanz-García |, Marie |, et al. Evaluation of critical parameters in the hollow-fibre system for tuberculosis: A case study of moxifloxacin. British Journal of Clinical Pharmacology. Published online April 17, 2024. doi:10.1111/BCP.16068
- Pezzani MD, Arieti F, Rajendran NB, et al. Frequency of bloodstream infections caused by six key antibiotic-resistant pathogens for prioritization of research and discovery of new therapies in Europe: a systematic review. Clinical Microbiology and Infection. 2024;30:S4-S13. doi:10.1016/j.cmi.2023.10.019
- Robotham J v., Tacconelli E, Vella V, de Kraker MEA. Synthesizing pathogen- and infection-specific estimates of the burden of antimicrobial resistance in Europe for health-technology assessment: gaps, heterogeneity, and bias. Clinical Microbiology and Infection. 2024;30:S1-S3. doi:10.1016/j.cmi.2023.10.004
- Kingston R, Vella V, Pouwels KB, et al. Excess resource use and cost of drug-resistant infections for six key pathogens in Europe: a systematic review and Bayesian meta-analysis. Clinical Microbiology and Infection. 2024;30:S26-S36. doi:10.1016/J.CMI.2023.12.013
- Smiejkowska N, Oorts L, van Calster K, et al. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors . Microbiology Spectrum. 2024;12(3). doi:10.1128/SPECTRUM.03723-23
- Gillespie SH, DiNardo AR, Georghiou SB, et al. Developing biomarker assays to accelerate tuberculosis drug development: defining target product profiles. The Lancet Microbe. 2024;0(0). doi:10.1016/S2666-5247(24)00085-5
- Villa S, de Colombani P, Dall’Olio L, Gargioni G, Raviglione M. Towards comprehensive clinical trials for new tuberculosis drug regimens: policy recommendations from a stakeholder analysis. BMJ Global Health. 2024;9(4):e014630. doi:10.1136/BMJGH-2023-014630
- Dufault SM, Crook AM, Rolfe K, Phillips PPJ. A flexible multi-metric Bayesian framework for decision-making in Phase II multi-arm multi-stage studies. Statistics in Medicine. 2024;43(3):501-513. doi:10.1002/SIM.9961
- van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Critical Reviews in Microbiology. 2024;51(3):463-483. doi:10.1080/1040841X.2024.2370979
2023
-
Moraga P, Prieto P, Conradie A, et al. Academia and industry agreement on a feasibility tool for first-time-in-human clinical trial units. Clinical and Translational Science. 2023;16(12):2421-2428. doi:10.1111/CTS.13655
-
van Wijk RC, Lucía A, Sudhakar PK, et al. Implementing best practices on data generation and reporting of Mycobacterium tuberculosis in vitro assays within the ERA4TB consortium. iScience. 2023;26(4). doi:10.1016/j.isci.2023.106411
-
Mockeliunas L, Faraj A, van Wijk RC, et al. Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development. Frontiers in Pharmacology. 2023;14:1150243. doi:10.3389/FPHAR.2023.1150243
-
Villar-Hernández R, Ghodousi A, Konstantynovska O, Duarte R, Lange C, Raviglione M. tuberculosis: current challenges and beyond. Breathe. 2023;19(1). doi:10.1183/20734735.0166-2022
-
Hassoun-Kheir N, Buetti N, Olivier V, et al. Targeted mupirocin-based decolonization for Staphylococcus aureus carriers and the subsequent risk of mupirocin resistance in haemodialysis patients – a longitudinal study over 20 years. Journal of Hospital Infection. 2023;135:55-58. doi:10.1016/j.jhin.2023.01.019
-
Hu W, Koch BEV, Lamers GEM, Forn-Cuní G, Spaink HP. Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria. Frontiers in Immunology. 2023;13:1075473. doi:10.3389/FIMMU.2022.1075473
-
Saluzzo F, Adepoju VA, Duarte R, Phillips PPJ, Lange C. Treatment-shortening regimens for tuberculosis: updates and future priorities. Breathe. 2023;19(3):230028. doi:10.1183/20734735.0028-2023
-
Ness T, Van LH, Petermane I, et al. Rolling out new anti-tuberculosis drugs without diagnostic capacity. Breathe. 2023;19(2). doi:10.1183/20734735.0084-2023
-
Toniolo C, Dhar N, McKinney JD. Uptake‐independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates. The EMBO Journal. 2023;42(9). doi:10.15252/embj.2023113490
-
Mishra R, Hannebelle M, Patil VP, et al. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell. 2023;186(23):5135-5150.e28. doi:10.1016/j.cell.2023.09.016
- Gries R, Dal Molin M, Chhen J, et al. Characterization of Two Novel Inhibitors of the Mycobacterium tuberculosis Cytochrome bc 1 Complex. Antimicrobial Agents and Chemotherapy. 2023;67(7). doi:10.1128/aac.00251-23
2022
-
Vasiliu A, Saktiawati AMI, Duarte R, Lange C, Cirillo DM. Implementing molecular tuberculosis diagnostic methods in limited-resource and high-burden countries. Breathe. 2022;18(4). doi:10.1183/20734735.0226-2022
-
Mistretta M, Gangneux N, Manina G. Microfluidic dose–response platform to track the dynamics of drug response in single mycobacterial cells. Scientific Reports 2022 12:1. 2022;12(1):1-18. doi:10.1038/s41598-022-24175-9
-
Hassoun-Kheir N, Harbarth S. Estimating antimicrobial resistance burden in Europe—what are the next steps? The Lancet Public Health. 2022;7(11):e886-e887. doi:10.1016/S2468-2667(22)00250-X
-
Pantel L, Guérin F, Serri M, et al. Exploring Cluster-Dependent Antibacterial Activities and Resistance Pathways of NOSO-502 and Colistin against Enterobacter cloacae Complex Species. Antimicrobial Agents and Chemotherapy. 2022;66(11):11. doi:10.1128/AAC.00776-22
-
Arrazuria R, Kerscher B, Huber KE, et al. Expert workshop summary: Advancing toward a standardized murine model to evaluate treatments for antimicrobial resistance lung infections. Frontiers in Microbiology. 2022;13:988725. doi:10.3389/FMICB.2022.988725
-
Arrazuria R, Kerscher B, Huber KE, et al. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Frontiers in Microbiology. 2022;13:988728. doi:10.3389/FMICB.2022.988728
-
Keutzer L, You H, Farnoud A, et al. Machine Learning and Pharmacometrics for Prediction of Pharmacokinetic Data: Differences, Similarities and Challenges Illustrated with Rifampicin. Pharmaceutics. 2022;14(8):1530. doi:10.3390/PHARMACEUTICS14081530
-
Heyckendorf J, Georghiou SB, Frahm N, et al. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clinical Microbiology Reviews. 2022;35(3). doi:10.1128/CMR.00227-21
-
de Kraker MEA, Harbarth S. Global burden of antimicrobial resistance: essential pieces of a global puzzle. The Lancet. 2022;399(10344):2347. doi:10.1016/S0140-6736(22)00940-0
-
Kilinç G, Walburg K v., Franken KLMC, et al. Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Frontiers in Cellular and Infection Microbiology. 2022;12:872361. doi:10.3389/FCIMB.2022.872361
- Visuña L, Yang D, Garcia-Blas J, Carretero J. Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning. BMC Medical Imaging. 2022;22(1):178. doi:10.1186/s12880-022-00904-4
- Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience. 2022;25(5):104233. doi:10.1016/j.isci.2022.104233
2021
-
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunological Reviews. 2021;301(1):62-83. doi:10.1111/IMR.12951
-
Boeree MJ, Lange C, Thwaites G, et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. International Journal of Tuberculosis and Lung Disease. 2021;25(11):886-889. doi:10.5588/IJTLD.21.0515
2020
-
Thacker V v., Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early M. tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife. 2020;9:1-73. doi:10.7554/ELIFE.59961
-
Faraj A, Clewe O, Svensson RJ, Mukamolova G v., Barer MR, Simonsson USH. Difference in Persistent Tuberculosis Bacteria between In Vitro and Sputum from Patients: Implications for Translational Predictions. Scientific Reports 2020 10:1. 2020;10(1):1-10. doi:10.1038/s41598-020-72472-y
-
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Frontiers in Immunology. 2020;11:533705. doi:10.3389/FIMMU.2020.01755
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Critical Reviews in Microbiology. 2024;51(3):463-483. doi:10.1080/1040841X.2024.237097
- Vera-Yunca D, Matias C, Vingsbo Lundberg C, Friberg LE. Model-based translation of the PKPD-relationship for linezolid and vancomycin on methicillin-resistant Staphylococcus aureus : from in vitro time–kill experiments to a mouse pneumonia model. Journal of Antimicrobial Chemotherapy. Published online May 9, 2025. doi:10.1093/jac/dkaf140
- Gadiya Y, Genilloud O, Bilitewski U, et al. Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning. Journal of Chemical Information and Modeling. Published online February 23, 2025. doi:10.1021/ACS.JCIM.4C02347
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Arrazuria R, Kerscher B, Huber KE, et al. Expert workshop summary: Advancing toward a standardized murine model to evaluate treatments for antimicrobial resistance lung infections. Frontiers in Microbiology. 2022;13:988725. doi:10.3389/fmicb.2022.988725
- Arrazuria R, Kerscher B, Huber KE, et al. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Frontiers in Microbiology. 2022;13:988728. doi:10.3389/fmicb.2022.988728
-
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Frontiers in Immunology. 2020;11:533705. doi:10.3389/FIMMU.2020.01755
- Karakitsios E, della Pasqua O, Dokoumetzidis A. Extrapolation of lung pharmacokinetics of bedaquiline across species using physiologically-based pharmacokinetic modelling. British Journal of Clinical Pharmacology. 2025;91(11). doi:10.1002/BCP.70163
- Rabodoarivelo MS, Hoffmann E, Gaudin C, et al. Protocol to quantify bacterial burden in time-kill assays using colony-forming units and most probable number readouts for Mycobacterium tuberculosis. STAR Protocols. 2025;6(1):103643. doi:10.1016/j.xpro.2025.103643
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
-
Gries R, Chhen J, van Gumpel E, et al. Discovery of dual-active ethionamide boosters inhibiting the Mycobacterium tuberculosis ESX-1 secretion system. Cell Chemical Biology. 2024;31(4):699-711.e6. doi:10.1016/j.chembiol.2023.12.007
- Nagar S, Nicholls D, Dawoud D, et al. A systematic review of economic evaluations of pharmacological treatments for active tuberculosis. Frontiers in Public Health. 2024;12:1201512. doi:10.3389/FPUBH.2024.1201512
-
Aguilar-Ayala DA, Fernando Sanz-García |, Marie |, et al. Evaluation of critical parameters in the hollow-fibre system for tuberculosis: A case study of moxifloxacin. British Journal of Clinical Pharmacology. Published online April 17, 2024. doi:10.1111/BCP.16068
-
Moraga P, Prieto P, Conradie A, et al. Academia and industry agreement on a feasibility tool for first-time-in-human clinical trial units. Clinical and Translational Science. 2023;16(12):2421-2428. doi:10.1111/CTS.13655
-
van Wijk RC, Lucía A, Sudhakar PK, et al. Implementing best practices on data generation and reporting of Mycobacterium tuberculosis in vitro assays within the ERA4TB consortium. iScience. 2023;26(4). doi:10.1016/j.isci.2023.106411
-
Toniolo C, Dhar N, McKinney JD. Uptake‐independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates. The EMBO Journal. 2023;42(9). doi:10.15252/embj.2023113490
-
Mishra R, Hannebelle M, Patil VP, et al. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell. 2023;186(23):5135-5150.e28. doi:10.1016/j.cell.2023.09.016
-
Gries R, Dal Molin M, Chhen J, et al. Characterization of Two Novel Inhibitors of the Mycobacterium tuberculosis Cytochrome bc 1 Complex. Antimicrobial Agents and Chemotherapy. 2023;67(7). doi:10.1128/aac.00251-23
- Mistretta M, Gangneux N, Manina G. Microfluidic dose–response platform to track the dynamics of drug response in single mycobacterial cells. Scientific Reports 2022 12:1. 2022;12(1):1-18. doi:10.1038/s41598-022-24175-9
- Visuña L, Yang D, Garcia-Blas J, Carretero J. Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning. BMC Medical Imaging. 2022;22(1):178. doi:10.1186/s12880-022-00904-4
- Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience. 2022;25(5):104233. doi:10.1016/j.isci.2022.104233
-
Thacker V v., Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early M. tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife. 2020;9:1-73. doi:10.7554/ELIFE.59961
-
Faraj A, Clewe O, Svensson RJ, Mukamolova G v., Barer MR, Simonsson USH. Difference in Persistent Tuberculosis Bacteria between In Vitro and Sputum from Patients: Implications for Translational Predictions. Scientific Reports 2020 10:1. 2020;10(1):1-10. doi:10.1038/s41598-020-72472-y
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Pantel L, Guérin F, Serri M, et al. Exploring Cluster-Dependent Antibacterial Activities and Resistance Pathways of NOSO-502 and Colistin against Enterobacter cloacae Complex Species. Antimicrobial Agents and Chemotherapy. 2022;66(11):11. doi:10.1128/AAC.00776-22
- Brinch ML, Palladino A, Geurtsen J, et al. The neglected model validation of antimicrobial resistance transmission models – a systematic review. Antimicrobial Resistance & Infection Control. 2025;14(1):59. doi:10.1186/s13756-025-01574-x
- Guedes M, Bazan A de la S, Rubio-Martín E, et al. How to: share and reuse data – challenges and solutions from PrIMAVeRa project. Clinical Microbiology and Infection. 2025;0(0). doi:10.1016/j.cmi.2025.01.024
- Hassoun-Kheir N, Guedes M, Arieti F, et al. Expert consensus on antimicrobial resistance research priorities to focus development and implementation of antibacterial vaccines and monoclonal antibodies. Eurosurveillance. 2024;29(47):2400212. doi:10.2807/1560-7917.ES.2024.29.47.2400212
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Leclerc QJ, Duval A, Guillemot D, Opatowski L, Temime L. Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study. PLOS Medicine. 2024;21(7):e1004433. doi:10.1371/journal.pmed.1004433
- Pezzani MD, Arieti F, Rajendran NB, et al. Frequency of bloodstream infections caused by six key antibiotic-resistant pathogens for prioritization of research and discovery of new therapies in Europe: a systematic review. Clinical Microbiology and Infection. 2024;30:S4-S13. doi:10.1016/j.cmi.2023.10.019
- Robotham J v., Tacconelli E, Vella V, de Kraker MEA. Synthesizing pathogen- and infection-specific estimates of the burden of antimicrobial resistance in Europe for health-technology assessment: gaps, heterogeneity, and bias. Clinical Microbiology and Infection. 2024;30:S1-S3. doi:10.1016/j.cmi.2023.10.004
- Kingston R, Vella V, Pouwels KB, et al. Excess resource use and cost of drug-resistant infections for six key pathogens in Europe: a systematic review and Bayesian meta-analysis. Clinical Microbiology and Infection. 2024;30:S26-S36. doi:10.1016/j.cmi.2023.12.013
-
Hassoun-Kheir N, Guedes M, Ngo Nsoga MT, et al. A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe. Clinical Microbiology and Infection. 2024;30:S14-S25. doi:10.1016/j.cmi.2023.09.001
- Hassoun-Kheir N, Buetti N, Olivier V, et al. Targeted mupirocin-based decolonization for Staphylococcus aureus carriers and the subsequent risk of mupirocin resistance in haemodialysis patients – a longitudinal study over 20 years. Journal of Hospital Infection. 2023;135:55-58. doi:10.1016/j.jhin.2023.01.019
- Hassoun-Kheir N, Harbarth S. Estimating antimicrobial resistance burden in Europe—what are the next steps? The Lancet Public Health. 2022;7(11):e886-e887. doi:10.1016/S2468-2667(22)00250-X
- de Kraker MEA, Harbarth S. Global burden of antimicrobial resistance: essential pieces of a global puzzle. The Lancet. 2022;399(10344):2347. doi:10.1016/S0140-6736(22)00940-0
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends in Microbiology. 2024;32(7):663-677. doi:10.1016/j.tim.2023.11.011
-
Kilinç G, Boland R, Heemskerk MT, et al. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Subbian S, ed. Microbiology Spectrum. 2024;12(8). doi:10.1128/spectrum.00167-24
-
Hu W, Koch BEV, Lamers GEM, Forn-Cuní G, Spaink HP. Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria. Frontiers in Immunology. 2023;13:1075473. doi:10.3389/FIMMU.2022.1075473
-
Kilinç G, Walburg K v., Franken KLMC, et al. Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Frontiers in Cellular and Infection Microbiology. 2022;12:872361. doi:10.3389/FCIMB.2022.872361
-
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunological Reviews. 2021;301(1):62-83. doi:10.1111/IMR.12951
- Aguilar-Pérez C, Lenaerts AJ, Villellas C, et al. The role of cytochrome bc1 inhibitors in future tuberculosis treatment regimens. Nature Communications 2025 16:1. 2025;16(1):1-9. doi:10.1038/s41467-025-64427-6
- Verma AK, Kim RQ, Lamprecht DA, et al. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc1:aa3. npj Drug Discovery. 2025;2(1):6. doi:10.1038/s44386-025-00008-3
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Smiejkowska N, Oorts L, van Calster K, et al. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors. Microbiology Spectrum. 2024;12(3). doi:10.1128/SPECTRUM.03723-23
- van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Critical Reviews in Microbiology. 2024;51(3):463-483. doi:10.1080/1040841X.2024.2370979
- Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections*. Immunological Reviews. 2021;301(1):62-83. doi:10.1111/IMR.12951
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Weston DJ, Thomas S, Boyle GW, Pieren M. Alpibectir: Early Qualitative and Quantitative Metabolic Profiling from a First-Time-in-Human Study by Combining 19 F-NMR (Nuclear Magnetic Resonance), 1 H-NMR, and High-Resolution Mass Spectrometric Analyses. Drug Metabolism and Disposition. 2024;52(8):858-874. doi:10.1124/dmd.124.001562
- Pieren M, Abáigar Gutiérrez-Solana A, Antonijoan Arbós RM, et al. First-in-human study of alpibectir (BVL-GSK098), a novel potent anti-TB drug. Journal of Antimicrobial Chemotherapy. 2024;79(6):1353-1361. doi:10.1093/jac/dkae107
-
Behrens E, Wicha SG. Interoccasion variability in population pharmacokinetic models: identifiability, influence, interdependencies and derived study design recommendations. Journal of Pharmacokinetics and Pharmacodynamics. 2025;52(2):23. doi:10.1007/s10928-025-09966-7
- Dudnyk A, Lutchmun W, Duarte R, Lange C, Svensson EM. The importance of getting the dose right in the treatment of tuberculosis. Breathe. 2025;21(1):240177. doi:10.1183/20734735.0177-2024
- Lin Y, van der Laan LE, Karlsson MO, Garcia‐Prats AJ, Hesseling AC, Svensson EM. Model‐Informed Once‐Daily Dosing Strategy for Bedaquiline and Delamanid in Children, Adolescents and Adults with Tuberculosis. Clinical Pharmacology & Therapeutics. 2025;117(5):1292-1302. doi:10.1002/cpt.3536
- McClean M, Panciu TC, Lange C, Duarte R, Theis F. Artificial intelligence in tuberculosis: a new ally in disease control. Breathe. 2024;20(3):240056. doi:10.1183/20734735.0056-2024
- Schildkraut JA, Köhler N, Lange C, Duarte R, Gillespie SH. Advances in tuberculosis biomarkers: unravelling risk factors, active disease and treatment success. Breathe. 2024;20(3):240003. doi:10.1183/20734735.0003-2024
- Fernow J, Olliver M, Couet W, et al. The AMR Accelerator: from individual organizations to efficient antibiotic development partnerships. Nature Reviews Drug Discovery 2024. Published online September 23, 2024. doi:10.1038/d41573-024-00138-9. Green Open Access available through DiVA.
- Hoelscher M, Barros-Aguirre D, Dara M, et al. Candidate anti-tuberculosis medicines and regimens under clinical evaluation. Clinical Microbiology and Infection. 2024;30(9):1131-1138. doi:10.1016/j.cmi.2024.06.016
-
Gillespie SH, DiNardo AR, Georghiou SB, et al. Developing biomarker assays to accelerate tuberculosis drug development: defining target product profiles. The Lancet Microbe. 2024;0(0). doi:10.1016/S2666-5247(24)00085-5
-
Villa S, de Colombani P, Dall’Olio L, Gargioni G, Raviglione M. Towards comprehensive clinical trials for new tuberculosis drug regimens: policy recommendations from a stakeholder analysis. BMJ Global Health. 2024;9(4):e014630. doi:10.1136/BMJGH-2023-014630
-
Dufault SM, Crook AM, Rolfe K, Phillips PPJ. A flexible multi-metric Bayesian framework for decision-making in Phase II multi-arm multi-stage studies. Statistics in Medicine. 2024;43(3):501-513. doi:10.1002/SIM.9961
-
Mockeliunas L, Faraj A, van Wijk RC, et al. Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development. Frontiers in Pharmacology. 2023;14:1150243. doi:10.3389/FPHAR.2023.1150243
-
Villar-Hernández R, Ghodousi A, Konstantynovska O, Duarte R, Lange C, Raviglione M. Tuberculosis: current challenges and beyond. Breathe. 2023;19(1). doi:10.1183/20734735.0166-2022
-
Saluzzo F, Adepoju VA, Duarte R, Phillips PPJ, Lange C. Treatment-shortening regimens for tuberculosis: updates and future priorities. Breathe. 2023;19(3):230028. doi:10.1183/20734735.0028-2023
-
Ness T, Van LH, Petermane I, et al. Rolling out new anti-tuberculosis drugs without diagnostic capacity. Breathe. 2023;19(2). doi:10.1183/20734735.0084-2023
-
Vasiliu A, Saktiawati AMI, Duarte R, Lange C, Cirillo DM. Implementing molecular tuberculosis diagnostic methods in limited-resource and high-burden countries. Breathe. 2022;18(4). doi:10.1183/20734735.0226-2022
-
Keutzer L, You H, Farnoud A, et al. Machine Learning and Pharmacometrics for Prediction of Pharmacokinetic Data: Differences, Similarities and Challenges Illustrated with Rifampicin. Pharmaceutics. 2022;14(8):1530. doi:10.3390/PHARMACEUTICS14081530
-
Heyckendorf J, Georghiou SB, Frahm N, et al. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clinical Microbiology Reviews. 2022;35(3). doi:10.1128/CMR.00227-21
-
Boeree MJ, Lange C, Thwaites G, et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. International Journal of Tuberculosis and Lung Disease. 2021;25(11):886-889. doi:10.5588/IJTLD.21.0515
-
Thacker V v., Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early M. tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife. 2020;9:1-73. doi:10.7554/ELIFE.59961



